ga_trial_pdf_algorithm_base
Base class and implementations for GA Trial PDF algorithms.
Classes
BaseGATrialPDFGeneratorAlgorithm
class BaseGATrialPDFGeneratorAlgorithm( *, datastructure: DataStructure, report_metadata: ReportMetadata, filter: Optional[list[ColumnFilter | MethodFilter]] = None, save_path: Optional[Union[str, os.PathLike]] = None, filename_prefix: Optional[str] = None, pdf_filename_columns: Optional[list[str]] = None, total_ga_area_lower_bound: float = 2.5, total_ga_area_upper_bound: float = 17.5, trial_name: Optional[str] = None, **kwargs: Any,):Base algorithm factory for GA Trial PDF report generation.
Arguments
datastructure: The data structure to use for the algorithm.report_metadata: A ReportMetadata for the pdf report metadata fields.filter: A list of ColumnFilter or MethodFilter objects for eligibility.filename_prefix: The prefix for the pdf filename. Defaults to None.pdf_filename_columns: The columns from the datasource that should be used for the pdf filename. If not provided, the filename will be saved as "Patient_index_i.pdf" whereiis the index in the filtered datasource. Defaults to None.total_ga_area_lower_bound: The lower bound for the total GA area. Defaults to 2.5.total_ga_area_upper_bound: The upper bound for the total GA area. Defaults to 17.5.
Ancestors
- BaseNonModelAlgorithmFactory
- BaseAlgorithmFactory
- abc.ABC
- bitfount.federated.roles._RolesMixIn
- bitfount.types._BaseSerializableObjectMixIn
- typing.Generic
Variables
- static
fields_dict : ClassVar[T_FIELDS_DICT]
Methods
modeller
def modeller( self, *, context: ProtocolContext, **kwargs: Any,) ‑> NoResultsModellerAlgorithm:Inherited from:
BaseNonModelAlgorithmFactory.modeller :
Modeller-side of the algorithm.
worker
def worker(self, *, context: ProtocolContext, **kwargs: Any) ‑> ~T_WorkerSide:Inherited from:
BaseNonModelAlgorithmFactory.worker :
Worker-side of the algorithm.
PDFGeneratorRunProtocol
class PDFGeneratorRunProtocol(*args, **kwargs):Protocol defining the run method for PDF generators.
Ancestors
Methods
run
def run( self, *, results_df: pd.DataFrame, ga_dict: Any, task_id: str, filenames: Optional[list[str]] = None, **kwargs: Any,) ‑> pandas.core.frame.DataFrame:Generate PDF reports for the GA model results.