post_processing
Utilities for post-processing.
Classes
ColumnRenamerPostProcessor
class ColumnRenamerPostProcessor(column_mapping: dict[str, str]):Renames columns in a DataFrame.
Initialize the column renamer.
Arguments
column_mapping: Mapping from old column names to new column names.
Ancestors
Methods
process
def process(self, predictions: Any) ‑> Any:Process the predictions by renaming columns.
Arguments
predictions: The model output to process.
Returns Processed predictions with renamed columns.
JSONFieldRestructuringPostProcessor
class JSONFieldRestructuringPostProcessor( column_patterns: list[str], field_mappings: list[dict[str, str]], keep_original: bool = False,):Restructures JSON data by moving fields between different levels.
This is done for example to move fields from one json
level to another as for example from
{"key1": {"key2": "value", "key3": "val"}} to
{"key1": {"key2": "value"}, "key3": "val"} and vice-versa.
Initialize the JSON field restructurer.
Arguments
column_patterns: List of regex patterns matching columns to processfield_mappings: List of mappings, each with: - 'source_path': JSON path to extract (using dot notation, e.g., 'key1.key2' or 'key2') - 'target_path': Path to place the value (dot notation, e.g., ''key1.key2' or 'key2'')keep_original: Whether to keep the original fields
Ancestors
Methods
process
def process(self, predictions: Any) ‑> Any:Process predictions by restructuring JSON fields.
JSONKeyRenamerPostProcessor
class JSONKeyRenamerPostProcessor( column_patterns: list[str], key_mappings: list[dict[str, str]], recursive: bool = True,):Renames keys within JSON data stored in columns.
Initialize the JSON key renamer.
Arguments
column_patterns: List of regex patterns matching columns to processkey_mappings: List of mappings, each with: - 'source_key': Original key name - 'target_key': New key namerecursive: Whether to rename keys recursively throughout nested objects
Ancestors
Methods
process
def process(self, predictions: Any) ‑> Any:Process predictions by renaming JSON keys.
JSONWrapInListPostProcessor
class JSONWrapInListPostProcessor(column_patterns: list[str]):Wraps JSON data in an additional list layer.
Initialize the JSON wrap in list processor.
Arguments
column_patterns: List of regex patterns matching columns to process
Ancestors
Methods
process
def process(self, predictions: Any) ‑> Any:Process predictions by wrapping JSON data in an additional list.
StringToJSONPostProcessor
class StringToJSONPostProcessor(column_patterns: list[str]):Converts string columns containing JSON data to actual JSON/dict objects.
Initialize the string to JSON converter.
Arguments
column_patterns: List of regex patterns matching column names to process
Ancestors
Methods
process
def process(self, predictions: Any) ‑> Any:Process predictions by converting string columns to JSON objects.
TransformationApplierPostProcessor
class TransformationApplierPostProcessor( transformations: Union[list[Transformation], list[dict[str, Any]]],):Applies transformations from the transformations module.
Initialize the transformation applier.
Arguments
transformations: List of transformations to apply. Can be either: - A list of Transformation objects (for programmatic use) - A list of dicts (from YAML config) that will be parsed into Transformation objects
Ancestors
Methods
process
def process(self, predictions: Any) ‑> Any:Process the predictions using the transformations.
Arguments
predictions: Model output to process
Returns Processed predictions