post_processing_base
Base classes and utilities for post-processors.
Module
Functions
apply_postprocessors
def apply_postprocessors(postprocessors: list[PostProcessor], predictions: Any) ‑> Any:Apply a list of postprocessors to predictions in sequence.
Arguments
postprocessors: List of postprocessors to apply.predictions: Model predictions to process.
Returns Processed predictions
create_postprocessor
def create_postprocessor( config: dict[str, Any], access_token: Optional[str] = None,) ‑> Optional[PostProcessor]:Create a postprocessor from a configuration dictionary.
Arguments
config: Postprocessor configuration with 'type' and other parametersaccess_token: An optional HuggingFace access token
Returns An instance of the requested postprocessor or None if there is an error when creating it.
create_postprocessors
def create_postprocessors( postprocessor_configs: Optional[list[dict[str, Any]]] = None, access_token: Optional[str] = None,) ‑> list[PostProcessor]:Create a list of postprocessors from configurations.
Arguments
postprocessor_configs: Configuration for postprocessors, either: - None (returns an empty list) - A list of dicts, each with 'type' and other parametersaccess_token: An optional HuggingFace access token
Returns List of PostProcessors.
get_matching_columns
def get_matching_columns(all_columns: list[str], patterns: list[str]) ‑> list[str]:Get column names matching the given patterns.
Arguments
all_columns: List of all column names.patterns: List of regex patterns to match.
Returns List of column names that match at least one pattern.
parse_json
def parse_json(value: Any) ‑> Any:Parse JSON data from various formats.
Arguments
value: The value to parse.
Returns Parsed JSON object or original value if parsing fails.
Classes
CompoundPostProcessor
class CompoundPostProcessor( postprocessing_sequence: list[dict[str, Any]], name: Optional[str] = None,):Applies multiple postprocessors in sequence.
Initialize the compound postprocessor.
Arguments
postprocessing_sequence: List of postprocessor configurations to apply in a sequencename: Name as a string for the for this transformation pipeline. Default to None.
Ancestors
Methods
process
def process(self, predictions: Any) ‑> Any:Apply all postprocessors in sequence.
PostProcessor
class PostProcessor():Base class that all postprocessors inherit from.
Subclasses
Methods
process
def process( self, predictions: Union[PredictReturnType, pd.DataFrame],) ‑> Union[PredictReturnType, pandas.core.frame.DataFrame, Any]:Process the model predictions.
PostprocessorType
class PostprocessorType(*args, **kwds):Types of built-in postprocessors.
Variables
- static
COMPOUND
- static
HUGGINGFACE_APPLY_ID_TO_LABELS
- static
JSON_KEY_RENAME
- static
JSON_RESTRUCTURE
- static
JSON_WRAP_IN_LIST
- static
NER_DEIDENTIFICATION
- static
RENAME
- static
STRING_TO_JSON
- static
TRANSFORM