algorithm_schemas
Config YAML specification classes related to algorithms.
Classes
AggregatorConfig
class AggregatorConfig( secure: bool, weights: Optional[dict[str, Union[int, float]]] = None,):Configuration for the Aggregator.
AlgorithmConfig
class AlgorithmConfig(name: str, arguments: Optional[Any] = None):Configuration for the Algorithm.
Subclasses
- BscanImageAndMaskGenerationAlgorithmConfig
- CSVReportAlgorithmConfig
- CSVReportGeneratorOphthalmologyAlgorithmConfig
- EHRPatientInfoDownloadAlgorithmConfig
- EHRPatientQueryAlgorithmConfig
- ETDRSAlgorithmConfig
- FluidVolumeCalculationAlgorithmConfig
- FoveaCoordinatesAlgorithmConfig
- GATrialCalculationAlgorithmAmethystConfig
- GATrialCalculationAlgorithmBronzeConfig
- GATrialCalculationAlgorithmCharcoalConfig
- GATrialCalculationAlgorithmJadeConfig
- GATrialPDFGeneratorAlgorithmAmethystConfig
- GATrialPDFGeneratorAlgorithmJadeConfig
- GenericAlgorithmConfig
- HuggingFaceImageClassificationInferenceAlgorithmConfig
- HuggingFaceImageSegmentationInferenceAlgorithmConfig
- HuggingFacePerplexityEvaluationAlgorithmConfig
- HuggingFaceTextClassificationInferenceAlgorithmConfig
- HuggingFaceTextGenerationInferenceAlgorithmConfig
- ImageSelectionAlgorithmConfig
- ModelAlgorithmConfig
- PrivateSqlQueryAlgorithmConfig
- RecordFilterAlgorithmConfig
- ReduceCSVAlgorithmCharcoalConfig
- S3UploadAlgorithmConfig
- SqlQueryAlgorithmConfig
- TIMMFineTuningAlgorithmConfig
- TIMMInferenceAlgorithmConfig
- TrialInclusionCriteriaMatchAlgorithmAmethystConfig
- TrialInclusionCriteriaMatchAlgorithmBronzeConfig
- TrialInclusionCriteriaMatchAlgorithmCharcoalConfig
- TrialInclusionCriteriaMatchAlgorithmJadeConfig
- bitfount.runners.config_schemas.algorithm_schemas._SimpleCSVAlgorithmAlgorithmConfig
BscanImageAndMaskGenerationAlgorithmArgumentsConfig
class BscanImageAndMaskGenerationAlgorithmArgumentsConfig( segmentation_configs: list[bscan_mod.SegmentationConfig], save_path: Optional[Path] = None, output_original_bscans: Optional[bool] = False, image_format: Optional[bscan_mod.ImageFormats] = ImageFormats.JPEG, image_optimize: Optional[bool] = True, image_quality: Optional[int] = 90, image_subsampling: Optional[int] = 0, image_progressive: Optional[bool] = True, image_transparency: Optional[bool] = False,):Configuration for BscanImageAndMaskGenerationAlgorithm arguments.
Variables
- static
image_format : Optional[ImageFormats]
- static
image_optimize : Optional[bool]
- static
image_progressive : Optional[bool]
- static
image_quality : Optional[int]
- static
image_subsampling : Optional[int]
- static
image_transparency : Optional[bool]
- static
output_original_bscans : Optional[bool]
- static
save_path : Optional[pathlib.Path]
- static
segmentation_configs : list[SegmentationConfig]
BscanImageAndMaskGenerationAlgorithmConfig
class BscanImageAndMaskGenerationAlgorithmConfig( name: str, arguments: Optional[BscanImageAndMaskGenerationAlgorithmArgumentsConfig],):Configuration for BscanImageAndMaskGenerationAlgorithm.
Ancestors
Variables
- static
arguments : Optional[BscanImageAndMaskGenerationAlgorithmArgumentsConfig]
- static
name : str
CSVReportAlgorithmArgumentsConfig
class CSVReportAlgorithmArgumentsConfig( save_path: Optional[Path] = None, original_cols: Optional[list[str]] = None, filter: Optional[list[ColumnFilter]] = None,):Configuration for CSVReportAlgorithm arguments.
Variables
- static
filter : Optional[list[ColumnFilter]]
- static
original_cols : Optional[list[str]]
- static
save_path : Optional[pathlib.Path]
CSVReportAlgorithmConfig
class CSVReportAlgorithmConfig( name: str, arguments: Optional[CSVReportAlgorithmArgumentsConfig] = CSVReportAlgorithmArgumentsConfig(save_path=None, original_cols=None, filter=None),):Configuration for CSVReportAlgorithm.
Ancestors
CSVReportGeneratorOphthalmologyAlgorithmArgumentsConfig
class CSVReportGeneratorOphthalmologyAlgorithmArgumentsConfig( save_path: Optional[Path] = None, trial_name: Optional[str] = None, original_cols: Optional[list[str]] = None, aux_cols: Optional[list[str]] = [], rename_columns: Optional[dict[str, str]] = None, filter: Optional[list[ColumnFilter]] = None, match_patient_visit: Optional[MatchPatientVisit] = None, matched_csv_path: Optional[Path] = None, produce_matched_only: bool = True, csv_extensions: Optional[list[str]] = None, produce_trial_notes_csv: bool = False, sorting_columns: Optional[dict[str, str]] = None,):Configuration for CSVReportGeneratorOphthalmologyAlgorithm arguments.
Variables
- static
aux_cols : Optional[list[str]]
- static
csv_extensions : Optional[list[str]]
- static
filter : Optional[list[ColumnFilter]]
- static
match_patient_visit : Optional[MatchPatientVisit]
- static
matched_csv_path : Optional[pathlib.Path]
- static
original_cols : Optional[list[str]]
- static
produce_matched_only : bool
- static
produce_trial_notes_csv : bool
- static
rename_columns : Optional[dict[str, str]]
- static
save_path : Optional[pathlib.Path]
- static
sorting_columns : Optional[dict[str, str]]
- static
trial_name : Optional[str]
CSVReportGeneratorOphthalmologyAlgorithmConfig
class CSVReportGeneratorOphthalmologyAlgorithmConfig( name: str, arguments: Optional[CSVReportGeneratorOphthalmologyAlgorithmArgumentsConfig] = CSVReportGeneratorOphthalmologyAlgorithmArgumentsConfig(save_path=None, trial_name=None, original_cols=None, aux_cols=[], rename_columns=None, filter=None, match_patient_visit=None, matched_csv_path=None, produce_matched_only=True, csv_extensions=None, produce_trial_notes_csv=False, sorting_columns=None),):Configuration for CSVReportGeneratorOphthalmologyAlgorithm.
Ancestors
Variables
- static
arguments : Optional[CSVReportGeneratorOphthalmologyAlgorithmArgumentsConfig]
- static
name : str
EHRPatientInfoDownloadAlgorithmConfig
class EHRPatientInfoDownloadAlgorithmConfig( name: str, arguments: Optional[EHRPatientInfoDownloadArgumentsConfig] = EHRPatientInfoDownloadArgumentsConfig(),):Configuration for EHRPatientInfoDownloadAlgorithm.
Ancestors
EHRPatientInfoDownloadArgumentsConfig
class EHRPatientInfoDownloadArgumentsConfig():Configuration for EHRPatientInfoDownloadAlgorithm arguments.
EHRPatientQueryAlgorithmConfig
class EHRPatientQueryAlgorithmConfig( name: str, arguments: EHRPatientQueryArgumentsConfig = EHRPatientQueryArgumentsConfig(),):Configuration for EHRPatientQuery algorithm.
Ancestors
EHRPatientQueryArgumentsConfig
class EHRPatientQueryArgumentsConfig():Configuration for EHRPatientQuery algorithm arguments.
ETDRSAlgorithmArgumentsConfig
class ETDRSAlgorithmArgumentsConfig( laterality: str, slo_photo_location_prefixes: Optional[SLOSegmentationLocationPrefix] = None, slo_image_metadata_columns: Optional[SLOImageMetadataColumns] = None, oct_image_metadata_columns: Optional[OCTImageMetadataColumns] = None, threshold: float = 0.7, calculate_on_oct: bool = False, slo_mm_width: float = 8.8, slo_mm_height: float = 8.8,):Configuration for ETDRSAlgorithm arguments.
Variables
- static
calculate_on_oct : bool
- static
laterality : str
- static
oct_image_metadata_columns : Optional[OCTImageMetadataColumns]
- static
slo_image_metadata_columns : Optional[SLOImageMetadataColumns]
- static
slo_mm_height : float
- static
slo_mm_width : float
- static
slo_photo_location_prefixes : Optional[SLOSegmentationLocationPrefix]
- static
threshold : float
ETDRSAlgorithmConfig
class ETDRSAlgorithmConfig(name: str, arguments: Optional[ETDRSAlgorithmArgumentsConfig]):Configuration for ETDRSAlgorithm.
Ancestors
FederatedModelTrainingAlgorithmConfig
class FederatedModelTrainingAlgorithmConfig( name: str, arguments: Optional[FederatedModelTrainingArgumentsConfig] = FederatedModelTrainingArgumentsConfig(modeller_checkpointing=True, checkpoint_filename=None), model: Optional[ModelConfig] = None, pretrained_file: Optional[Path] = None,):Configuration for the FederatedModelTraining algorithm.
Ancestors
FederatedModelTrainingArgumentsConfig
class FederatedModelTrainingArgumentsConfig( modeller_checkpointing: bool = True, checkpoint_filename: Optional[str] = None,):Configuration for the FederatedModelTraining algorithm arguments.
FluidVolumeCalculationAlgorithmArgumentsConfig
class FluidVolumeCalculationAlgorithmArgumentsConfig( fluid_volume_include_segmentations: Optional[list[str]] = None,):Configuration for FluidVolumeCalculationAlgorithm arguments.
Variables
- static
fluid_volume_include_segmentations : Optional[list[str]]
FluidVolumeCalculationAlgorithmConfig
class FluidVolumeCalculationAlgorithmConfig( name: str, arguments: Optional[FluidVolumeCalculationAlgorithmArgumentsConfig] = FluidVolumeCalculationAlgorithmArgumentsConfig(fluid_volume_include_segmentations=None),):Configuration for FluidVolumeCalculationAlgorithm.
Ancestors
Variables
- static
arguments : Optional[FluidVolumeCalculationAlgorithmArgumentsConfig]
- static
name : str
FoveaCoordinatesAlgorithmArgumentsConfig
class FoveaCoordinatesAlgorithmArgumentsConfig( bscan_width_col: str = 'size_width', location_prefixes: Optional[SLOSegmentationLocationPrefix] = None,):Configuration for FoveaCoordinatesAlgorithm arguments.
Variables
- static
bscan_width_col : str
- static
location_prefixes : Optional[SLOSegmentationLocationPrefix]
FoveaCoordinatesAlgorithmConfig
class FoveaCoordinatesAlgorithmConfig( name: str, arguments: Optional[FoveaCoordinatesAlgorithmArgumentsConfig] = FoveaCoordinatesAlgorithmArgumentsConfig(bscan_width_col='size_width', location_prefixes=None),):Configuration for FoveaCoordinatesAlgorithm.
Ancestors
GATrialCalculationAlgorithmAmethystArgumentsConfig
class GATrialCalculationAlgorithmAmethystArgumentsConfig( ga_area_include_segmentations: Optional[list[str]] = None, ga_area_exclude_segmentations: Optional[list[str]] = None,):Configuration for GATrialCalculationAlgorithmAmethyst arguments.
Ancestors
- bitfount.runners.config_schemas.algorithm_schemas._GATrialCalculationAlgorithmBaseArgumentsConfig
GATrialCalculationAlgorithmAmethystConfig
class GATrialCalculationAlgorithmAmethystConfig( name: str, arguments: Optional[GATrialCalculationAlgorithmAmethystArgumentsConfig] = GATrialCalculationAlgorithmAmethystArgumentsConfig(ga_area_include_segmentations=None, ga_area_exclude_segmentations=None),):Configuration for GATrialCalculationAlgorithmAmethyst.
Ancestors
Variables
- static
arguments : Optional[GATrialCalculationAlgorithmAmethystArgumentsConfig]
- static
name : str
GATrialCalculationAlgorithmBronzeArgumentsConfig
class GATrialCalculationAlgorithmBronzeArgumentsConfig( ga_area_include_segmentations: Optional[list[str]] = None, ga_area_exclude_segmentations: Optional[list[str]] = None, fovea_landmark_idx: Optional[int] = 1,):Configuration for GATrialCalculationAlgorithmBronze arguments.
Ancestors
- bitfount.runners.config_schemas.algorithm_schemas._GATrialCalculationWithFoveaAlgorithmBaseArgumentsConfig
GATrialCalculationAlgorithmBronzeConfig
class GATrialCalculationAlgorithmBronzeConfig( name: str, arguments: Optional[GATrialCalculationAlgorithmBronzeArgumentsConfig] = GATrialCalculationAlgorithmBronzeArgumentsConfig(ga_area_include_segmentations=None, ga_area_exclude_segmentations=None, fovea_landmark_idx=1),):Configuration for GATrialCalculationAlgorithmBronze.
Ancestors
Variables
- static
arguments : Optional[GATrialCalculationAlgorithmBronzeArgumentsConfig]
- static
name : str
GATrialCalculationAlgorithmCharcoalArgumentsConfig
class GATrialCalculationAlgorithmCharcoalArgumentsConfig( ga_area_include_segmentations: Optional[list[str]] = None, ga_area_exclude_segmentations: Optional[list[str]] = None, fovea_landmark_idx: Optional[int] = 1,):Configuration for GATrialCalculationAlgorithmCharcoal arguments.
Ancestors
- bitfount.runners.config_schemas.algorithm_schemas._GATrialCalculationWithFoveaAlgorithmBaseArgumentsConfig
GATrialCalculationAlgorithmCharcoalConfig
class GATrialCalculationAlgorithmCharcoalConfig( name: str, arguments: Optional[GATrialCalculationAlgorithmCharcoalArgumentsConfig] = GATrialCalculationAlgorithmCharcoalArgumentsConfig(ga_area_include_segmentations=None, ga_area_exclude_segmentations=None, fovea_landmark_idx=1),):Configuration for GATrialCalculationAlgorithmCharcoal.
Ancestors
Variables
- static
arguments : Optional[GATrialCalculationAlgorithmCharcoalArgumentsConfig]
- static
name : str
GATrialCalculationAlgorithmJadeArgumentsConfig
class GATrialCalculationAlgorithmJadeArgumentsConfig( ga_area_include_segmentations: Optional[list[str]] = None, ga_area_exclude_segmentations: Optional[list[str]] = None,):Configuration for GATrialCalculationAlgorithmJade arguments.
Ancestors
- bitfount.runners.config_schemas.algorithm_schemas._GATrialCalculationAlgorithmBaseArgumentsConfig
GATrialCalculationAlgorithmJadeConfig
class GATrialCalculationAlgorithmJadeConfig( name: str, arguments: Optional[GATrialCalculationAlgorithmJadeArgumentsConfig] = GATrialCalculationAlgorithmJadeArgumentsConfig(ga_area_include_segmentations=None, ga_area_exclude_segmentations=None),):Configuration for GATrialCalculationAlgorithmJade.
Ancestors
Variables
- static
arguments : Optional[GATrialCalculationAlgorithmJadeArgumentsConfig]
- static
name : str
GATrialPDFGeneratorAlgorithmAmethystArgumentsConfig
class GATrialPDFGeneratorAlgorithmAmethystArgumentsConfig( report_metadata: Optional[ReportMetadata] = None, filename_prefix: Optional[str] = None, save_path: Optional[Path] = None, filter: Optional[list[ColumnFilter]] = None, pdf_filename_columns: Optional[list[str]] = None, trial_name: Optional[str] = None,):Configuration for GATrialPDFGeneratorAlgorithmAmethyst arguments.
Variables
- static
filename_prefix : Optional[str]
- static
filter : Optional[list[ColumnFilter]]
- static
pdf_filename_columns : Optional[list[str]]
- static
report_metadata : Optional[ReportMetadata]
- static
save_path : Optional[pathlib.Path]
- static
trial_name : Optional[str]
GATrialPDFGeneratorAlgorithmAmethystConfig
class GATrialPDFGeneratorAlgorithmAmethystConfig( name: str, arguments: Optional[GATrialPDFGeneratorAlgorithmAmethystArgumentsConfig] = GATrialPDFGeneratorAlgorithmAmethystArgumentsConfig(report_metadata=None, filename_prefix=None, save_path=None, filter=None, pdf_filename_columns=None, trial_name=None),):Configuration for GATrialPDFGeneratorAlgorithmAmethyst.
Ancestors
Variables
- static
arguments : Optional[GATrialPDFGeneratorAlgorithmAmethystArgumentsConfig]
- static
name : str
GATrialPDFGeneratorAlgorithmJadeArgumentsConfig
class GATrialPDFGeneratorAlgorithmJadeArgumentsConfig( report_metadata: Optional[ReportMetadata] = None, filename_prefix: Optional[str] = None, save_path: Optional[Path] = None, filter: Optional[list[ColumnFilter]] = None, pdf_filename_columns: Optional[list[str]] = None, trial_name: Optional[str] = None,):Configuration for GATrialPDFGeneratorAlgorithmJade arguments.
Variables
- static
filename_prefix : Optional[str]
- static
filter : Optional[list[ColumnFilter]]
- static
pdf_filename_columns : Optional[list[str]]
- static
report_metadata : Optional[ReportMetadata]
- static
save_path : Optional[pathlib.Path]
- static
trial_name : Optional[str]
GATrialPDFGeneratorAlgorithmJadeConfig
class GATrialPDFGeneratorAlgorithmJadeConfig( name: str, arguments: Optional[GATrialPDFGeneratorAlgorithmJadeArgumentsConfig] = GATrialPDFGeneratorAlgorithmJadeArgumentsConfig(report_metadata=None, filename_prefix=None, save_path=None, filter=None, pdf_filename_columns=None, trial_name=None),):Configuration for GATrialPDFGeneratorAlgorithmJade.
Ancestors
Variables
- static
arguments : Optional[GATrialPDFGeneratorAlgorithmJadeArgumentsConfig]
- static
name : str
GenericAlgorithmConfig
class GenericAlgorithmConfig(name: str, arguments: _JSONDict = {}):Configuration for unspecified algorithm plugins.
Raises
ValueError: if the algorithm name starts withbitfount.
Ancestors
HuggingFaceImageClassificationInferenceAlgorithmConfig
class HuggingFaceImageClassificationInferenceAlgorithmConfig( name: str, arguments: Optional[HuggingFaceImageClassificationInferenceArgumentsConfig],):Configuration for HuggingFaceImageClassificationInference.
Ancestors
Variables
- static
arguments : Optional[HuggingFaceImageClassificationInferenceArgumentsConfig]
- static
name : str
HuggingFaceImageClassificationInferenceArgumentsConfig
class HuggingFaceImageClassificationInferenceArgumentsConfig( model_id: str, apply_softmax_to_predictions: bool = True, batch_size: int = 1, seed: int = 42, top_k: int = 5,):Configuration for HuggingFaceImageClassificationInference arguments.
Variables
- static
apply_softmax_to_predictions : bool
- static
batch_size : int
- static
model_id : str
- static
seed : int
- static
top_k : int
HuggingFaceImageSegmentationInferenceAlgorithmConfig
class HuggingFaceImageSegmentationInferenceAlgorithmConfig( name: str, arguments: Optional[HuggingFaceImageSegmentationInferenceArgumentsConfig],):Configuration for HuggingFaceImageSegmentationInference.
Ancestors
Variables
- static
arguments : Optional[HuggingFaceImageSegmentationInferenceArgumentsConfig]
- static
name : str
HuggingFaceImageSegmentationInferenceArgumentsConfig
class HuggingFaceImageSegmentationInferenceArgumentsConfig( model_id: str, alpha: float = 0.3, batch_size: int = 1, dataframe_output: bool = False, mask_threshold: float = 0.5, overlap_mask_area_threshold: float = 0.5, seed: int = 42, save_path: Optional[str] = None, subtask: Optional[str] = None, threshold: float = 0.9,):Configuration for HuggingFaceImageSegmentationInference arguments.
Variables
- static
alpha : float
- static
batch_size : int
- static
dataframe_output : bool
- static
mask_threshold : float
- static
model_id : str
- static
overlap_mask_area_threshold : float
- static
save_path : Optional[str]
- static
seed : int
- static
subtask : Optional[str]
- static
threshold : float
HuggingFacePerplexityEvaluationAlgorithmConfig
class HuggingFacePerplexityEvaluationAlgorithmConfig( name: str, arguments: Optional[HuggingFacePerplexityEvaluationArgumentsConfig],):Configuration for the HuggingFacePerplexityEvaluation algorithm.
Ancestors
Variables
- static
arguments : Optional[HuggingFacePerplexityEvaluationArgumentsConfig]
- static
name : str
HuggingFacePerplexityEvaluationArgumentsConfig
class HuggingFacePerplexityEvaluationArgumentsConfig( model_id: str, stride: int = 512, seed: int = 42,):Configuration for the HuggingFacePerplexityEvaluation algorithm arguments.
HuggingFaceTextClassificationInferenceAlgorithmConfig
class HuggingFaceTextClassificationInferenceAlgorithmConfig( name: str, arguments: Optional[HuggingFaceTextClassificationInferenceArgumentsConfig],):Configuration for HuggingFaceTextClassificationInference.
Ancestors
Variables
- static
arguments : Optional[HuggingFaceTextClassificationInferenceArgumentsConfig]
- static
name : str
HuggingFaceTextClassificationInferenceArgumentsConfig
class HuggingFaceTextClassificationInferenceArgumentsConfig( model_id: str, batch_size: int = 1, function_to_apply: Optional[str] = None, seed: int = 42, top_k: int = 5,):Configuration for HuggingFaceTextClassificationInference arguments.
Variables
- static
batch_size : int
- static
function_to_apply : Optional[str]
- static
model_id : str
- static
seed : int
- static
top_k : int
HuggingFaceTextGenerationInferenceAlgorithmConfig
class HuggingFaceTextGenerationInferenceAlgorithmConfig( name: str, arguments: Optional[HuggingFaceTextGenerationInferenceArgumentsConfig],):Configuration for the HuggingFaceTextGenerationInference algorithm.
Ancestors
Variables
- static
arguments : Optional[HuggingFaceTextGenerationInferenceArgumentsConfig]
- static
name : str
HuggingFaceTextGenerationInferenceArgumentsConfig
class HuggingFaceTextGenerationInferenceArgumentsConfig( model_id: str, prompt_format: Optional[str] = None, max_length: int = 50, num_return_sequences: int = 1, seed: int = 42, min_new_tokens: int = 1, repetition_penalty: float = 1.0, num_beams: int = 1, early_stopping: bool = True, pad_token_id: Optional[int] = None, eos_token_id: Optional[int] = None, device: Optional[str] = None, torch_dtype: str = 'float32',):Configuration for the HuggingFaceTextGenerationInference algorithm arguments.
Variables
- static
device : Optional[str]
- static
early_stopping : bool
- static
eos_token_id : Optional[int]
- static
max_length : int
- static
min_new_tokens : int
- static
model_id : str
- static
num_beams : int
- static
num_return_sequences : int
- static
pad_token_id : Optional[int]
- static
prompt_format : Optional[str]
- static
repetition_penalty : float
- static
seed : int
- static
torch_dtype : str
ImageSelectionAlgorithmArgumentsConfig
class ImageSelectionAlgorithmArgumentsConfig():Configuration for ImageSelectionAlgorithm arguments.
ImageSelectionAlgorithmConfig
class ImageSelectionAlgorithmConfig( name: str, arguments: ImageSelectionAlgorithmArgumentsConfig,):Configuration for ImageSelectionAlgorithm algorithm.
Ancestors
ModelAlgorithmConfig
class ModelAlgorithmConfig( name: str, arguments: Optional[Any] = None, model: Optional[ModelConfig] = None, pretrained_file: Optional[Path] = None,):Configuration for the Model algorithms.
Ancestors
Subclasses
ModelEvaluationAlgorithmConfig
class ModelEvaluationAlgorithmConfig( name: str, arguments: Optional[ModelEvaluationArgumentsConfig], model: Optional[ModelConfig] = None, pretrained_file: Optional[Path] = None,):Configuration for the ModelEvaluation algorithm.
Ancestors
ModelEvaluationArgumentsConfig
class ModelEvaluationArgumentsConfig():Configuration for the ModelEvaluation algorithm arguments.
ModelInferenceAlgorithmConfig
class ModelInferenceAlgorithmConfig( name: str, arguments: ModelInferenceArgumentsConfig = ModelInferenceArgumentsConfig(class_outputs=None, postprocessors=None), model: Optional[ModelConfig] = None, pretrained_file: Optional[Path] = None,):Configuration for the ModelInference algorithm.
Ancestors
ModelInferenceArgumentsConfig
class ModelInferenceArgumentsConfig( class_outputs: Optional[list[str]] = None, postprocessors: Optional[list[dict[str, str]]] = None,):Configuration for the ModelInference algorithm arguments.
Variables
- static
class_outputs : Optional[list[str]]
- static
postprocessors : Optional[list[dict[str, str]]]
ModelTrainingAndEvaluationAlgorithmConfig
class ModelTrainingAndEvaluationAlgorithmConfig( name: str, arguments: Optional[ModelTrainingAndEvaluationArgumentsConfig], model: Optional[ModelConfig] = None, pretrained_file: Optional[Path] = None,):Configuration for the ModelTrainingAndEvaluation algorithm.
Ancestors
ModelTrainingAndEvaluationArgumentsConfig
class ModelTrainingAndEvaluationArgumentsConfig():Configuration for the ModelTrainingAndEvaluation algorithm arguments.
PrivateSqlQueryAlgorithmConfig
class PrivateSqlQueryAlgorithmConfig( name: str, arguments: PrivateSqlQueryArgumentsConfig,):Configuration for the PrivateSqlQuery algorithm.
Ancestors
PrivateSqlQueryArgumentsConfig
class PrivateSqlQueryArgumentsConfig( query: str, epsilon: float, delta: float, column_ranges: Union[dict[str, PrivateSqlQueryColumnArgumentsConfig], dict[str, dict[str, PrivateSqlQueryColumnArgumentsConfig]]], table: Optional[str] = None, db_schema: Optional[str] = None,):Configuration for the PrivateSqlQuery algorithm arguments.
Variables
- static
column_ranges : Union[dict[str, PrivateSqlQueryColumnArgumentsConfig], dict[str, dict[str, PrivateSqlQueryColumnArgumentsConfig]]]
- static
db_schema : Optional[str]
- static
delta : float
- static
epsilon : float
- static
query : str
- static
table : Optional[str]
PrivateSqlQueryColumnArgumentsConfig
class PrivateSqlQueryColumnArgumentsConfig( lower: Optional[int] = None, upper: Optional[int] = None,):Configuration for the PrivateSqlQuery algorithm column arguments.
RecordFilterAlgorithmArgumentsConfig
class RecordFilterAlgorithmArgumentsConfig( strategies: Sequence[Union[FilterStrategy, str]], filter_args_list: list[dict[str, Any]],):Configuration for RecordFilter algorithm arguments.
Variables
- static
filter_args_list : list[dict[str, typing.Any]]
- static
strategies : Sequence[Union[FilterStrategy, str]]
RecordFilterAlgorithmConfig
class RecordFilterAlgorithmConfig( name: str, arguments: Optional[RecordFilterAlgorithmArgumentsConfig],):Configuration for RecordFilter algorithm.
Ancestors
ReduceCSVAlgorithmCharcoalArgumentsConfig
class ReduceCSVAlgorithmCharcoalArgumentsConfig( save_path: Optional[Path] = None, eligible_only: bool = True, delete_intermediate: bool = True,):Configuration for ReduceCSVAlgorithmCharcoal arguments.
Variables
- static
delete_intermediate : bool
- static
eligible_only : bool
- static
save_path : Optional[pathlib.Path]
ReduceCSVAlgorithmCharcoalConfig
class ReduceCSVAlgorithmCharcoalConfig( name: str, arguments: Optional[ReduceCSVAlgorithmCharcoalArgumentsConfig] = ReduceCSVAlgorithmCharcoalArgumentsConfig(save_path=None, eligible_only=True, delete_intermediate=True),):Configuration for ReduceCSVAlgorithmCharcoal.
Ancestors
S3UploadAlgorithmArgumentsConfig
class S3UploadAlgorithmArgumentsConfig( s3_bucket: str, aws_region: Optional[str], aws_profile: str = 'default',):Configuration for S3UploadAlgorithm arguments.
S3UploadAlgorithmConfig
class S3UploadAlgorithmConfig( name: str, arguments: Optional[S3UploadAlgorithmArgumentsConfig],):Configuration for S3UploadAlgorithm.
Ancestors
SqlQueryAlgorithmConfig
class SqlQueryAlgorithmConfig(name: str, arguments: SqlQueryArgumentsConfig):Configuration for the SqlQuery algorithm.
Ancestors
SqlQueryArgumentsConfig
class SqlQueryArgumentsConfig(query: str, table: Optional[str] = None):Configuration for the SqlQuery algorithm arguments.
TIMMFineTuningAlgorithmConfig
class TIMMFineTuningAlgorithmConfig( name: str, arguments: Optional[TIMMFineTuningArgumentsConfig],):Configuration for TIMMFineTuning algorithm.
Ancestors
TIMMFineTuningArgumentsConfig
class TIMMFineTuningArgumentsConfig( model_id: str, args: Optional[TemplatedTimmTrainingConfig] = None, batch_transformations: Optional[dict[str, list[Union[str, _JSONDict]]]] = None, labels: Optional[list[str]] = None, return_weights: bool = False, save_path: Optional[Path] = None,):Configuration for TIMMFineTuning algorithm arguments.
Variables
- static
args : Optional[TemplatedTimmTrainingConfig]
- static
batch_transformations : Optional[dict[str, list[typing.Union[str, dict[str, typing.Any]]]]]
- static
labels : Optional[list[str]]
- static
model_id : str
- static
return_weights : bool
- static
save_path : Optional[pathlib.Path]
TIMMInferenceAlgorithmConfig
class TIMMInferenceAlgorithmConfig( name: str, arguments: Optional[TIMMInferenceArgumentsConfig],):Configuration for TIMMInference algorithm.
Ancestors
TIMMInferenceArgumentsConfig
class TIMMInferenceArgumentsConfig( model_id: str, num_classes: Optional[int] = None, checkpoint_path: Optional[Path] = None, class_outputs: Optional[list[str]] = None, batch_transformations: Optional[list[Union[str, _JSONDict]]] = None,):Configuration for TIMMInference algorithm arguments.
Variables
- static
batch_transformations : Optional[list[typing.Union[str, dict[str, typing.Any]]]]
- static
checkpoint_path : Optional[pathlib.Path]
- static
class_outputs : Optional[list[str]]
- static
model_id : str
- static
num_classes : Optional[int]
TemplatedTimmTrainingConfig
class TemplatedTimmTrainingConfig( pretrained: bool = True, initial_checkpoint: str = '', num_classes: Optional[int] = None, gp: Optional[str] = None, img_size: Optional[int] = None, in_chans: Optional[int] = None, input_size: Optional[tuple[int, int, int]] = None, crop_pct: Optional[float] = None, mean: Optional[list[float]] = None, std: Optional[list[float]] = None, interpolation: str = '', batch_size: int = 16, validation_batch_size: Optional[int] = None, channels_last: bool = False, fuser: str = '', grad_accum_steps: int = 1, grad_checkpointing: bool = False, fast_norm: bool = False, model_kwargs: dict[str, Any] = {}, head_init_scale: Optional[float] = None, head_init_bias: Optional[float] = None, torchscript: bool = False, torchcompile: Optional[str] = None, opt: str = 'sgd', opt_eps: Optional[float] = None, opt_betas: Optional[list[float]] = None, momentum: float = 0.9, weight_decay: float = 0.05, clip_grad: Optional[float] = None, clip_mode: str = 'norm', layer_decay: Optional[float] = 0.65, opt_kwargs: dict[str, Any] = {}, sched: str = 'constant_with_warmup', sched_on_updates: bool = False, lr: Optional[float] = 1e-05, lr_base: float = 0.005, lr_base_size: int = 256, lr_base_scale: str = '', lr_noise: Optional[list[float]] = None, lr_noise_pct: float = 0.67, lr_noise_std: float = 1.0, lr_cycle_mul: float = 1.0, lr_cycle_decay: float = 0.5, lr_cycle_limit: int = 1, lr_k_decay: float = 1.0, warmup_lr: float = 1e-05, min_lr: float = 0, epochs: int = 300, epoch_repeats: float = 0.0, start_epoch: Optional[int] = None, decay_milestones: list[int] = [90, 180, 270], decay_epochs: float = 90, warmup_epochs: int = 5, warmup_prefix: bool = False, cooldown_epochs: int = 0, patience_epochs: int = 10, decay_rate: float = 1.0, aug_splits: int = 0, jsd_loss: bool = False, bce_loss: bool = False, bce_target_thresh: Optional[float] = None, resplit: bool = False, mixup: float = 0.0, cutmix: float = 0.0, cutmix_minmax: Optional[list[float]] = None, mixup_prob: float = 1.0, mixup_switch_prob: float = 0.5, mixup_mode: str = 'batch', mixup_off_epoch: int = 0, smoothing: float = 0.1, drop: float = 0.0, drop_connect: Optional[float] = None, drop_path: Optional[float] = 0.2, drop_block: Optional[float] = None, bn_momentum: Optional[float] = None, bn_eps: Optional[float] = None, sync_bn: bool = False, dist_bn: str = 'reduce', split_bn: bool = False, model_ema: bool = False, model_ema_force_cpu: bool = False, model_ema_decay: float = 0.9998, seed: int = 42, log_interval: int = 50, recovery_interval: int = 0, checkpoint_hist: int = 10, workers: int = 4, save_images: bool = False, amp: bool = False, amp_dtype: str = 'float16', amp_impl: str = 'native', no_ddp_bb: bool = False, synchronize_step: bool = False, no_prefetcher: bool = False, eval_metric: str = 'top1', tta: int = 0, local_rank: int = 0,):Configuration for TIMMFineTuning algorithm arguments.
Ancestors
- TIMMTrainingConfig
- bitfount.types.UsedForConfigSchemas
TrialInclusionCriteriaMatchAlgorithmAmethystArgumentsConfig
class TrialInclusionCriteriaMatchAlgorithmAmethystArgumentsConfig( cnv_threshold: float = 0.5, largest_ga_lesion_lower_bound: float = 1.26, largest_ga_lesion_upper_bound: Optional[float] = None, total_ga_area_lower_bound: float = 2.5, total_ga_area_upper_bound: float = 17.5, patient_age_lower_bound: Optional[int] = None, patient_age_upper_bound: Optional[int] = None,):Configuration for TrialInclusionCriteriaMatchAlgorithmAmethyst arguments.
Ancestors
- bitfount.runners.config_schemas.algorithm_schemas._TrialInclusionCriteriaMatchAlgorithmBaseArgumentsConfig
TrialInclusionCriteriaMatchAlgorithmAmethystConfig
class TrialInclusionCriteriaMatchAlgorithmAmethystConfig( name: str, arguments: Optional[TrialInclusionCriteriaMatchAlgorithmAmethystArgumentsConfig] = TrialInclusionCriteriaMatchAlgorithmAmethystArgumentsConfig(cnv_threshold=0.5, largest_ga_lesion_lower_bound=1.26, largest_ga_lesion_upper_bound=None, total_ga_area_lower_bound=2.5, total_ga_area_upper_bound=17.5, patient_age_lower_bound=None, patient_age_upper_bound=None),):Configuration for TrialInclusionCriteriaMatchAlgorithmAmethyst.
Ancestors
Variables
- static
arguments : Optional[TrialInclusionCriteriaMatchAlgorithmAmethystArgumentsConfig]
- static
name : str
TrialInclusionCriteriaMatchAlgorithmBronzeArgumentsConfig
class TrialInclusionCriteriaMatchAlgorithmBronzeArgumentsConfig( cnv_threshold: float = 0.5, largest_ga_lesion_lower_bound: float = 1.26, largest_ga_lesion_upper_bound: Optional[float] = None, total_ga_area_lower_bound: float = 2.5, total_ga_area_upper_bound: float = 17.5, patient_age_lower_bound: Optional[int] = None, patient_age_upper_bound: Optional[int] = None, distance_from_fovea_lower_bound: float = 0.0, distance_from_fovea_upper_bound: float = inf, exclude_foveal_ga: bool = False, conditions_inclusion_codes: Optional[list[str]] = None, conditions_exclusion_codes: Optional[list[str]] = None, procedures_exclusion_codes: Optional[list[str]] = None,):Configuration for TrialInclusionCriteriaMatchAlgorithmBronze arguments.
Ancestors
- bitfount.runners.config_schemas.algorithm_schemas._TrialInclusionCriteriaMatchAlgorithmBaseArgumentsConfig
Variables
- static
conditions_exclusion_codes : Optional[list[str]]
- static
conditions_inclusion_codes : Optional[list[str]]
- static
distance_from_fovea_lower_bound : float
- static
distance_from_fovea_upper_bound : float
- static
exclude_foveal_ga : bool
- static
procedures_exclusion_codes : Optional[list[str]]
TrialInclusionCriteriaMatchAlgorithmBronzeConfig
class TrialInclusionCriteriaMatchAlgorithmBronzeConfig( name: str, arguments: Optional[TrialInclusionCriteriaMatchAlgorithmBronzeArgumentsConfig] = TrialInclusionCriteriaMatchAlgorithmBronzeArgumentsConfig(cnv_threshold=0.5, largest_ga_lesion_lower_bound=1.26, largest_ga_lesion_upper_bound=None, total_ga_area_lower_bound=2.5, total_ga_area_upper_bound=17.5, patient_age_lower_bound=None, patient_age_upper_bound=None, distance_from_fovea_lower_bound=0.0, distance_from_fovea_upper_bound=inf, exclude_foveal_ga=False, conditions_inclusion_codes=None, conditions_exclusion_codes=None, procedures_exclusion_codes=None),):Configuration for TrialInclusionCriteriaMatchAlgorithmBronze.
Ancestors
Variables
- static
arguments : Optional[TrialInclusionCriteriaMatchAlgorithmBronzeArgumentsConfig]
- static
name : str
TrialInclusionCriteriaMatchAlgorithmCharcoalArgumentsConfig
class TrialInclusionCriteriaMatchAlgorithmCharcoalArgumentsConfig( cnv_threshold: float = 0.5, largest_ga_lesion_lower_bound: float = 1.26, largest_ga_lesion_upper_bound: Optional[float] = None, total_ga_area_lower_bound: float = 2.5, total_ga_area_upper_bound: float = 17.5, patient_age_lower_bound: Optional[int] = None, patient_age_upper_bound: Optional[int] = None, conditions_inclusion_codes: Optional[list[str]] = None, conditions_exclusion_codes: Optional[list[str]] = None, procedures_exclusion_codes: Optional[list[str]] = None,):Configuration for TrialInclusionCriteriaMatchAlgorithmCharcoal arguments.
Ancestors
- bitfount.runners.config_schemas.algorithm_schemas._TrialInclusionCriteriaMatchAlgorithmBaseArgumentsConfig
Variables
- static
conditions_exclusion_codes : Optional[list[str]]
- static
conditions_inclusion_codes : Optional[list[str]]
- static
procedures_exclusion_codes : Optional[list[str]]
TrialInclusionCriteriaMatchAlgorithmCharcoalConfig
class TrialInclusionCriteriaMatchAlgorithmCharcoalConfig( name: str, arguments: Optional[TrialInclusionCriteriaMatchAlgorithmCharcoalArgumentsConfig] = TrialInclusionCriteriaMatchAlgorithmCharcoalArgumentsConfig(cnv_threshold=0.5, largest_ga_lesion_lower_bound=1.26, largest_ga_lesion_upper_bound=None, total_ga_area_lower_bound=2.5, total_ga_area_upper_bound=17.5, patient_age_lower_bound=None, patient_age_upper_bound=None, conditions_inclusion_codes=None, conditions_exclusion_codes=None, procedures_exclusion_codes=None),):Configuration for TrialInclusionCriteriaMatchAlgorithmCharcoal.
Ancestors
Variables
- static
arguments : Optional[TrialInclusionCriteriaMatchAlgorithmCharcoalArgumentsConfig]
- static
name : str
TrialInclusionCriteriaMatchAlgorithmJadeArgumentsConfig
class TrialInclusionCriteriaMatchAlgorithmJadeArgumentsConfig():Configuration for TrialInclusionCriteriaMatchAlgorithmJade arguments.
TrialInclusionCriteriaMatchAlgorithmJadeConfig
class TrialInclusionCriteriaMatchAlgorithmJadeConfig( name: str, arguments: Optional[TrialInclusionCriteriaMatchAlgorithmJadeArgumentsConfig] = TrialInclusionCriteriaMatchAlgorithmJadeArgumentsConfig(),):Configuration for TrialInclusionCriteriaMatchAlgorithmJade.
Ancestors
Variables
- static
arguments : Optional[TrialInclusionCriteriaMatchAlgorithmJadeArgumentsConfig]
- static
name : str